The Relation Between Trichomonas Vaginalis and Female Infertility: A Meta-Analysis

Neda Hashemi1,2, Zahra Soleimani3,4*

1. Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
2. Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
3. Department of Obstetrics and Gynecology, Baqiyatallah University of Medical Sciences, Tehran, Iran
4. Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

ABSTRACT

Background & Objective: The association of Trichomonas vaginalis (T. vaginalis) and infertility is controversial. There is a doubt regarding the relation between T. vaginalis infection and female infertility. This study is the first meta-analysis that investigated the association between T. vaginalis infection and risk of female infertility.

Materials & Methods: Web of Science, PubMed and Scopus were searched using appropriate keywords as major international electronic bibliographic databases up to January 2020. Q-test and F statistic were used for evaluating heterogeneity between studies as well as Begg's and Egger's tests for exploring publication. Results were reported by pooled odds ratio (OR) estimate from individual studies by choosing random-effects model.

Results: In total, 650 articles were obtained by initial search until January 2020 with 9779 women. Results of the pooled OR estimates showed a significant association between T. vaginalis and infertility in adjusted studies (OR=1.95; 95% CI: 1.46, 2.43). Based on Begg's and Egger's tests, there was no evidence of publication bias (P=0.532 and P=0.896, respectively).

Conclusion: There was a significant association between T. vaginalis and female infertility. However, more evidence is necessary to prove the potential association of T. vaginalis with an increased risk of female infertility.

Keywords: Infertility, Meta-analysis, Trichomonas, Females

Introduction

Sexually transmitted diseases (STDs) are usually considered the leading cause of infertility worldwide. About 70% of all pelvic inflammatory disease (PID) lead to tubal damage (1). The Trichomonas vaginalis (T. vaginalis) is one of STDs and has a worldwide distribution (2). T. vaginalis is categorized as the leading non-viral STDs in the world (3). This infection is one of the parasites considered as the major public health concern (4). According to the reports of the world Health Organization (WHO), protozoa T. vaginalis involves more than a half of all STDs worldwide which are curable. The studies have reported that T. vaginalis is in relation with endometritis, salpingitis and PID (5).

High prevalence of T. vaginalis in women, and its association with severe adversarial reproductive results has made this infection a major health challenge in the world (6). El-Shazly et al. showed that the rate of T. vaginalis among infertile women is considerably higher than fertile women (7). However, the relation between T. vaginalis and infertility is controversial. In some studies a trend exists between T. vaginalis and infertility risk (8-10) while others do not show such an association (2, 11-13).

Up to now, no meta-analysis has been performed to investigate the association between T. vaginalis infection and the risk of infertility. Literature search showed an adequate reports regarding T. vaginalis infection and the risk of infertility worldwide. Therefore the present meta-analysis was designed to assess whether T. vaginalis can cause infertility in females.

Methods

We used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a guideline to conduct this study (14).

Eligibility Criteria

The association between T. vaginalis and infertility in observational studies were included with no
restriction on age, primary or secondary infertility, race, country, year, and study language. In the present study we considered *T. vaginalis* as exposure and infertility as the outcome.

Search Methods

Scopus, PubMed and Web of Science were searched as the three major relevant international databases by relevant keywords to assess the association between of *T. vaginalis* and infertility from inception to January 2020. The keywords searched were *(trichomonas vaginalis, trichomonas vaginitis, trichomoniasis vaginalis or trichomoniasis vaginitis) and (infertile or infertility).* The references of relevant articles were also searched manually.

Data Collection and Validity Assessment

Articles were determined and relevant data were extracted by two of the researchers independently (ZS and NH). Disagreements between them were fixed by negotiation to reach to a consensus. Two authors separately extracted variables of interest from each study which was included first author, the setting of the study, publication year and country, number of patients, age, diagnostic modality for *T. vaginalis*, infertility, odds ratio (OR).

Quality of the selected studies was assessed by the Newcastle Ottawa Statement Manual (NOS) instrument (15). A set of items included in this measure. They were selection, comparability, exposure, and outcome. If a study obtained seven star-items or higher was considered as high-quality and the rest were considered low-quality investigations.

Assessing Heterogeneity Among Studies and Publication Bias

The heterogeneity among studies was assessed by Q-test and I² test (16). Also we used Funnel plot as the graphical scale and the Begg's and Egger's tests (17) to determine possible publication bias, and the random effect model was used to estimate the relation between *T. vaginalis* and infertility (18). For controlling risk factors of infertility (smoking, age, race, contraceptive use and number of pregnancies), meta-analysis was performed by two ways including crude and adjusted form. Data was analyzed by Stata 14 at 0.05 significant level.

Results

A total of 650 studies were collected for the study up to January 2020 and 105 duplicate articles in the mentioned databases were excluded. In continue by evaluating the titles, 511 studies were dropped. In the second assessment, 25 were excluded based on studying the full article. Finally, 9 studies included in the final analysis (Figure 1). Of these nine selected studies, six were case-control (1, 2, 7, 8, 10, 12) and three were cross-sectional (9, 19, 20). There was no cohort study in this meta-analysis.

A total of 650 studies were collected for the study up to January 2020 and 105 duplicate articles in the mentioned databases were excluded. In continue by evaluating the titles, 511 studies were dropped. In the second assessment, 25 were excluded based on studying the full article. Finally, 9 studies included in the final analysis (Figure 1). Of these nine selected studies, six were case-control (1, 2, 7, 8, 10, 12) and three were cross-sectional (9, 19, 20). There was no cohort study in this meta-analysis.

Effects of Exposure

In this study, the relation between *T. vaginalis* and risk of female infertility was assessed in Figure 2. Results of the adjusted OR estimates indicating a significant relation between the *T. vaginalis* and the risk of infertility (OR=1.95; 95% CI: 1.46, 2.43). However results of the crude estimate was not significant (OR=0.55; 95% CI: 0.10, 1.00). The results in adjusted and crude studies were homogenous.

Subgroup analysis was performed based on design of the studies. Results of the OR estimates showed a significant association between *T. vaginalis* and infertility in case-control studies (OR=1.50; 95% CI: 1.08, 1.93) while in cross-sectional studies, the
observed association was not significant (OR=1.79; 95% CI: -0.15, 3.74).

Publication Bias

Based on the Begg's and Egger's tests, there was no evidence of publication bias ($P=0.532$ and $P=0.896$, respectively) and studies were nearly symmetrical (Figure 3).

Quality of the Studies

According to the NOS scale, of included studies seven studies were high-quality and two low-quality.

Table 1. Characteristics of the included studies to the meta-analysis

<table>
<thead>
<tr>
<th>1st author, year</th>
<th>Country</th>
<th>Design</th>
<th>Sample</th>
<th>Diagnosis method</th>
<th>age</th>
<th>Estimate</th>
<th>Adjustment</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherman et al., 1987</td>
<td>USA</td>
<td>Case-control</td>
<td>1312</td>
<td>Medical records</td>
<td>20-39</td>
<td>OR</td>
<td>Adjusted</td>
<td>High</td>
</tr>
<tr>
<td>Grodstein et al., 1993</td>
<td>USA</td>
<td>Case-control</td>
<td>3833</td>
<td>Not reported</td>
<td>No data</td>
<td>OR</td>
<td>Adjusted</td>
<td>High</td>
</tr>
<tr>
<td>Okonofu et al., 1995</td>
<td>Nigeria</td>
<td>Case-control</td>
<td>178</td>
<td>Under microscope</td>
<td>27.8</td>
<td>OR</td>
<td>Crude</td>
<td>Low</td>
</tr>
<tr>
<td>Kildea et al., 2000</td>
<td>Australia</td>
<td>Cross-sectional</td>
<td>342</td>
<td>Medical records</td>
<td>30.4</td>
<td>OR</td>
<td>Adjusted</td>
<td>High</td>
</tr>
<tr>
<td>El-shazly et al., 2001</td>
<td>Egypt</td>
<td>Case-control</td>
<td>280</td>
<td>No data</td>
<td>OR</td>
<td>Crude</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Adamson et al., 2011</td>
<td>India</td>
<td>Case-control</td>
<td>1923</td>
<td>Culture</td>
<td>25.9</td>
<td>OR</td>
<td>Crude</td>
<td>Low</td>
</tr>
<tr>
<td>Kaya et al., 2015</td>
<td>Turkey</td>
<td>Case-control</td>
<td>51</td>
<td>CPLM</td>
<td>31.1</td>
<td>OR</td>
<td>Crude</td>
<td>High</td>
</tr>
<tr>
<td>Rostami, 2017</td>
<td>Iran</td>
<td>Cross-sectional</td>
<td>420</td>
<td>Culture</td>
<td>33.74</td>
<td>OR</td>
<td>Crude</td>
<td>High</td>
</tr>
<tr>
<td>Klinger, 2006</td>
<td>Tanzania</td>
<td>Cross-sectional</td>
<td>1440</td>
<td>M-PCR</td>
<td>20-44</td>
<td>OR</td>
<td>Adjusted</td>
<td>High</td>
</tr>
</tbody>
</table>

OR: Odds Ratio, author: Author

Table 2. The subgroup analysis according the study design

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Studies</th>
<th>No. of studies</th>
<th>OR (95% CI)</th>
<th>I^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-control studies</td>
<td></td>
<td>6</td>
<td>1.50(1.08, 1.93)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Cross-sectional studies</td>
<td></td>
<td>3</td>
<td>1.45(-0.15, 3.74)</td>
<td>84.4%</td>
</tr>
</tbody>
</table>

OR: Odds Ratio, CI: confidence interval

Figure 2. Forest plot of the association between trichomonas vaginalis and infertility

Figure 3. Funnel plot of the association between trichomonas vaginalis and infertility
Discussion

To our knowledge, this was the first meta-analysis in the world to assess the association of *T. vaginalis* and infertility in females. Based on this evidence, *T. vaginalis* in females is a risk factor for infertility. There was no cohort study in this meta-analysis. In subgroup analysis, there was a significant association between *T. vaginalis* and infertility in case-control studies.

Many microorganisms including bacteria, parasites, viruses and yeasts can be involved in female reproductive and lead to infertility (21). *T. vaginalis* is identified in nearly 3.15% of asymptomatic admitted women in infertility clinics (21). Some studies have shown that tubal infertility is nearly twofold as high in women who showed a history of *T. vaginalis* compared to women without infection (8, 10).

T. vaginalis in females might play a main role in preterm labor, and low birth weight in pregnancy. *T. vaginalis* is also in relation with cervical intraepithelial neoplastic and atypical pelvic inflammatory disease and these complications can lead to infertility in women (21).

T. vaginalis can decrease the complement elements and elevate the IgA level in serum prolactin and vaginal discharge (22). According to these results, screening and treatment of *T. vaginalis* seems necessary to control STDs and female infertility.

In the current study, there were some limitations. (a) In some studies only the unadjusted OR were reported. However for controlling known risk factors of infertility we used the adjusted form in this meta-analysis. However, this might introduce information bias and limitation in our results. (b) Some studies did not distinguish primary and secondary infertility and cause of infertility (tubal, ovulation, etc). Therefore, we could not perform subgroup analysis for them. Despite these limitations, the findings show that *T. vaginalis* is a risk factor for female infertility in adjusted studies with 9779 participants.

Conclusion

T. vaginalis is a risk factor for female infertility in adjusted studies with 9779 participants. More studies are needed to assess the potential association of *T. vaginalis* with an increased risk of female infertility.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest

The authors declare no conflict of interest.

References

How to Cite This Article: