Volume 7, Issue 3 (May & June 2022)                   J Obstet Gynecol Cancer Res 2022, 7(3): 165-170 | Back to browse issues page

XML Print

1- Department of Obstetrics and Gynecology, Perinatology Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
2- Department of Obstetrics and Gynecology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran , marjan80810@yahoo.com
3- Perinatology Unit, Shariati hospital, Tehran University of Medical Sciences, Tehran, Iran
4- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Abstract:   (554 Views)

Background & Objective: IUGR (intrauterine growth restriction) fetuses have been known as a significant concern in clinical practice. It is associated with fetal mortality and morbidity and prenatal adverse cardiac remodeling. The aim of this study is the evaluation of the relation between MPI (myocardial performance index) abnormalities and doppler findings in both normal and IUGR fetuses.
Materials & Methods: In this cross-sectional study, 400 consecutive pregnant women in Shariati Hospital, Tehran, Iran, in 2019 and 2020 underwent ultrasound assessment at 28-40 weeks, in which among the 400 performed ultrasounds, 47 fetuses with IUGR were selected as a case group, and 47 fetuses with normal weight were selected based on AGA (appropriate gestational age). Cardiac function was evaluated by measuring MPI in diastolic and systolic function in two groups. The results were compared to the IUGR (case group) and control group by SPSS software version 20.
Results: In receiver operating characteristic (ROC) analysis, the AUC (area under the curve) for left ventricular MPI (LV MPI) was 0.929 (CI95%: 0.868-0.991; P=0.001), and the sensitivity and specificity values were 87% and 69.4% with a cut-off point of 0.2850. In ROC analysis, the area under the curve for RV MPI was 0.842 (CI95%: 0.741-0.942; P=0.001), and the sensitivity and specificity values were 78.3% and 63.9%, with a cut-off point 0.2850. Left and right ventricular MPI showed a significant difference statistically between the case and the control groups.
Conclusion: The study showed a significant rise of MPI in IUGR fetuses. MPI can be considered as a useful parameter for evaluating the severity of growth restriction in IUGR fetuses.

Full-Text [PDF 230 kb]   (153 Downloads) |   |   Full-Text (HTML)  (87 Views)  
Systematic Review: Original Research | Subject: Maternal Fetal Medicine
Received: 2021/08/18 | Accepted: 2021/09/30 | Published: 2022/01/12

1. Sharma D, Shastri S, Sharma P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin Med Insights Pediatr. 2016; 10:67-83. [DOI:10.4137/CMPed.S40070] [PMID] [PMCID]
2. Kehl S, Dötsch J, Hecher K, Schlembach D, Schmitz D, Stepan H, et al. Intrauterine Growth Restriction. Guideline of the German Society of Gynecology and Obstetrics (S2k-Level, AWMF Registry No. 015/080, October 2016). Geburtshilfe Frauenheilkd. 2017; 77(11):1157-73. [DOI:10.1055/s-0043-118908] [PMID] [PMCID]
3. Albu AR, Horhoianu IA, Dumitrascu MC, Horhoianu V. Growth assessment in diagnosis of Fetal Growth Restriction. Review. J Med Life. 2014; 7(2):150-4.
4. Albu AR, Anca AF, Horhoianu VV, Horhoianu IA. Predictive factors for intrauterine growth restriction. J Med Life. 2014; 7(2):165-71.
5. Puccio G, Giuffré M, Piccione M, Piro E, Rinaudo G, Corsello G. Intrauterine growth restriction and congenital malformations: a retrospective epidemiological study. Ital J Pediatr. 2013; 39:23. [DOI:10.1186/1824-7288-39-23] [PMID] [PMCID]
6. Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front Endocrinol (Lausanne). 2019; 10:55. [DOI:10.3389/fendo.2019.00055] [PMID] [PMCID]
7. Krishna U, Bhalerao S. Placental insufficiency and fetal growth restriction. J Obstet Gynaecol India. 2011; 61(5):505-11. [DOI:10.1007/s13224-011-0092-x] [PMID] [PMCID]
8. Bukowski R, Hansen NI, Willinger M, Reddy UM, Parker CB, Pinar H, et al. Fetal growth and risk of stillbirth: a population-based case-control study. PLoS Med. 2014; 11(4):e1001633. [DOI:10.1371/journal.pmed.1001633] [PMID] [PMCID]
9. Pels A, Beune IM, van Wassenaer-Leemhuis AG, Limpens J, Ganzevoort W. Early-onset fetal growth restriction: A systematic review on mortality and morbidity. Acta Obstet Gynecol Scand. 2020; 99(2):153-66. [DOI:10.1111/aogs.13702] [PMID] [PMCID]
10. Khanduri S, Chhabra S, Yadav S, Sabharwal T, Chaudhary M, Usmani T, et al. Role of Color Doppler Flowmetry in Prediction of Intrauterine Growth Retardation in High-Risk Pregnancy. Cureus. 2017; 9(11):e1827. [DOI:10.7759/cureus.1827]
11. Stampalija T, Arabin B, Wolf H, Bilardo CM, Lees C. Is middle cerebral artery Doppler related to neonatal and 2-year infant outcome in early fetal growth restriction? Am J Obstet Gynecol. 2017; 216(5):521.
12. Menendez-Castro C, Rascher W, Hartner A. Intrauterine growth restriction - impact on cardiovascular diseases later in life. Mol Cell Pediatr. 2018; 5(1):4. [DOI:10.1186/s40348-018-0082-5] [PMID] [PMCID]
13. Cohen E, Wong FY, Horne RS, Yiallourou SR. Intrauterine growth restriction: impact on cardiovascular development and function throughout infancy. Pediatr Res. 2016; 79(6):821-30. [DOI:10.1038/pr.2016.24] [PMID]
14. Crispi F, Bijnens B, Sepulveda-Swatson E, Cruz-Lemini M, Rojas-Benavente J, Gonzalez-Tendero A, et al. Postsystolic shortening by myocardial deformation imaging as a sign of cardiac adaptation to pressure overload in fetal growth restriction. Circ Cardiovasc Imaging. 2014 Sep; 7(5):781-7. [DOI:10.1161/CIRCIMAGING.113.001490] [PMID]
15. Moghadam EA, Zeinaloo A, Danaeian M, Hantoushzadeh S, Vahdani FG, Mazouri A, et al. The diagnosis of early fetal cardiac changes of the gestational diabetic mothers: Presenting the preload index. Iran J Pediatr. 2019;29(2).
16. Zhang L, Han J, Zhang N, Li Z, Wang J, Xuan Y, et al. Assessment of fetal modified myocardial performance index in early-onset and late-onset fetal growth restriction. Echocardiography. 2019; 36(6):1159-64. [DOI:10.1111/echo.14364] [PMID] [PMCID]
17. Pacheco Silva C, Araujo Júnior E, Maccagnano Zamith M, Rabachini Caetano AC, Perez Zamarian AC, Oliveira Cavalcante R, et al. Assessment of modified myocardial performance index in foetuses with growth restriction. Med Ultrason. 2016; 18(2):207-13. [DOI:10.11152/mu.2013.2066.182.idx] [PMID]
18. Cruz-Martinez R, Figueras F, Benavides-Serralde A, Crispi F, Hernandez-Andrade E, Gratacos E. Sequence of changes in myocardial performance index in relation to aortic isthmus and ductus venosus Doppler in fetuses with early-onset intrauterine growth restriction. Ultrasound Obstet Gynecol. 2011; 38(2):179-84. [DOI:10.1002/uog.8903] [PMID]
19. Öcal DF, Yakut K, Öztürk FH, Öztürk M, Oğuz Y, Altınboğa O, et al. Utility of the modified myocardial performance index in growth-restricted fetuses. Echocardiography. 2019; 36(10):1895-900. [DOI:10.1111/echo.14489] [PMID]
20. Henry A, Alphonse J, Tynan D, Welsh AW. Fetal myocardial performance index in assessment and management of small-for-gestational-age fetus: a cohort and nested case-control study. Ultrasound Obstet Gynecol. 2018; 51(2):225-35. [DOI:10.1002/uog.17476] [PMID]
21. Masoumy EP, Sawyer AA, Sharma S, Patel JA, Gordon PMK, Regnault TRH, et al. The lifelong impact of fetal growth restriction on cardiac development. Pediatr Res. 2018; 84(4):537-44. [DOI:10.1038/s41390-018-0069-x] [PMID] [PMCID]
22. Bendix I, Miller SL, Winterhager E. Editorial: Causes and Consequences of Intrauterine Growth Restriction. Front Endocrinol (Lausanne). 2020; 11:205. [DOI:10.3389/fendo.2020.00205] [PMID] [PMCID]
23. Nair A, Radhakrishnan S. Fetal left ventricular myocardial performance index: Defining normal values for Indian population and a review of literature. Ann Pediatr Cardiol. 2016; 9(2):132-6. [DOI:10.4103/0974-2069.177516] [PMID] [PMCID]
24. Cruz-Lemini M, Crispi F, Valenzuela-Alcaraz B, Figueras F, Gómez O, Sitges M, et al. A fetal cardiovascular score to predict infant hypertension and arterial remodeling in intrauterine growth restriction. Am J Obstet Gynecol. 2014; 210(6):552. [DOI:10.1016/j.ajog.2013.12.031] [PMID]
25. Bhorat IE, Bagratee JS, Pillay M, Reddy T. Determination of the myocardial performance index in deteriorating grades of intrauterine growth restriction and its link to adverse outcomes. Prenat Diagn. 2015; 35(3):266-73. [DOI:10.1002/pd.4537] [PMID]
26. Chawengsettakul S, Russameecharoen K, Wanitpongpan P. Fetal cardiac function measured by myocardial performance index of small-for-gestational age fetuses. J Obstet Gynaecol Res. 2015; 41(2):222-8. [DOI:10.1111/jog.12508] [PMID]
27. Bhorat I, Pillay M, Reddy T. The clinical prognostic significance of myocardial performance index (MPI) in stable placental-mediated disease. Cardiovasc J Afr. 2018; 29(5):310-6. [DOI:10.5830/CVJA-2018-036] [PMID]
28. Alici Davutoglu E, Ozel A, Oztunc F, Madazli R. Modified myocardial performance index and its prognostic significance for adverse perinatal outcome in early and late onset fetal growth restriction. J Matern Fetal Neonatal Med. 2020; 33(2):277-82. [DOI:10.1080/14767058.2018.1489534] [PMID]
29. Maheshwari P, Henry A, Welsh AW. The Fetal Modified Myocardial Performance Index: Is Automation the Future? Biomed Res Int. 2015; 2015:215910. [DOI:10.1155/2015/215910] [PMID] [PMCID]
30. Patey O, Carvalho JS, Thilaganathan B. Perinatal changes in cardiac geometry and function in growth-restricted fetuses at term. Ultrasound Obstet Gynecol. 2019; 53(5):655-62. [DOI:10.1002/uog.19193] [PMID]

Rights and permissions
Creative Commons License Journal of Obstetrics, Gynecology and Cancer Research by Farname Inc is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Based on a work at http://jogcr.com/.